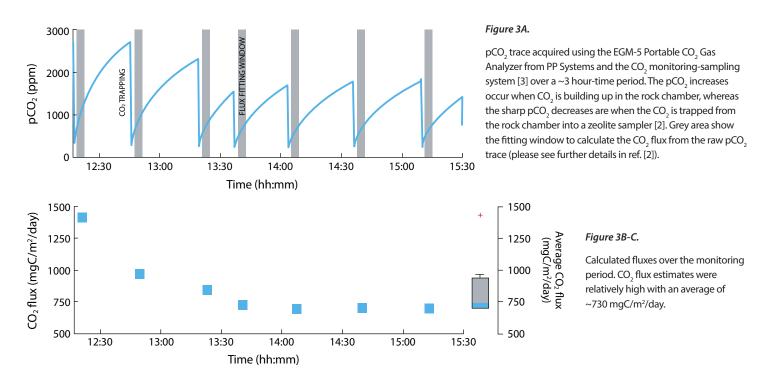
Measuring CO₂ Efflux From Sedimentary Rocks

The concentration of carbon dioxide (CO₂) in the atmosphere controls Earth's climate. Sedimentary rocks act as a giant geologic reservoir of carbon that can exchange CO₂ with the atmosphere. Carbon in rocks is stored in the form of organic matter (e.g. ancient plant remains) and carbonate minerals (e.g., calcite or CaCO₃). Erosion can act to expose sedimentary rocks to oxygen in the atmosphere, and this can lead to weathering and: i) oxidation of the sedimentary organic matter that produces CO_2 ; ii) oxidation of sulfide minerals (e.g., pyrite) that produces sulfuric acid which ultimately dissolves carbonate minerals and produces CO_2 . In other words, when sedimentary rocks are exposed to the atmosphere, they can release CO_2 that has been locked away for millions of years. We know that this process is slow compared to human emissions of CO_2 from burning fossil fuels. However, it is likely to be a major player in the natural carbon cycle, and influences atmospheric CO_2 over thousands to millions of years.

Figure 1A. EGM-5 Portable CO₂ Gas Analyzer connected to a chamber drilled in the rock face [2], through the MS³ monitoring-sampling system [3], while we measure CO₂ efflux from sedimentary rock in the Laval stream catchment, Draix, France. (© *R. Hilton*)

Figure 1B. Equipment setup in the Waiapu River catchment, New Zealand. (© *R. Hilton*)


Figure 2. An example of the new method (EGM-5 Portable CO₂ Gas Analyzer connected to a chamber drilled in the rock face [2], through the MS³ monitoring-sampling system [3]) being used in the Waiapu River catchment, New Zealand. (© *R. Hilton*)

Despite this recognition, this CO_2 efflux is not well constrained, mainly due to a lack of measurements of how fast this occurs and how the flux varies in space and time. The CO_2 efflux from the weathering of sedimentary rocks is generally estimated indirectly – for instance by measuring the products of reactions found dissolved in river water [1]. Until now, no direct measurements of this CO_2 efflux exist.

In order to measure the sedimentary rock CO₂ efflux in situ, Robert G. Hilton and Guillaume Soulet (Department of Geography, Durham University, UK) and Mark H. Garnett (Natural Environment Research Council, NERC, Radiocarbon Facility, East Kilbride, UK) have designed a new approach. The research is funded by the **ROC-CO**₂ project funded by a European Research Council Starting Grant (https://roc-co2.weebly.com/) and supported by the OZCAR-RI Draix-Bléone Observatory in France (https://oredraixbleone.irstea.fr/en/). The team has designed a chamber method [2] coupled to the molecular sieve sampling system (MS³) designed in ref. [3] and using the EGM-5 Portable CO₂ Gas Analyzer from PP Systems. The chamber is drilled directly into the rock face that is undergoing weathering, and sealed using PVC tube, rubber bung and a series of glass tubes and Tygon® tubing. This enables the operators to connect the chamber to the CO₂ sampling system (MS³) through the EGM-5 Portable CO₂ Gas Analyzer (*Figures 1A, 1B & 2*). The chamber dimensions, typically 40 cm deep and 3 cm in diameter, were designed so that the chamber internal area to volume ratio is high, benefiting CO₂ flux measurements.

Chambers are stable and can stay in field for several months or years making it possible to monitor possible changes in the CO₂ efflux over seasonal cycles. The design takes advantage of the MS³ system [3] that enables the operator to trap the CO₂ actively through molecular zeolite sieves while measuring the CO₂ flux. This is a key development, as the combination of radiocarbon (¹⁴C) and the stable carbon (¹²C and ¹³C) isotopic composition of the sampled CO₂ are needed to partition the measured CO₂ flux into its two components: the CO₂ flux from sedimentary organic matter oxidation and the CO₂ flux from the carbonate dissolution by sulfuric acid [2].

Here an example is shown of a chamber and EGM-5 in use on March 27th 2017, when a series of CO, flux measurements were performed while trapping CO₂ (Figure 3A) for isotopic measurements back in the lab. Resulting CO₂ fluxes were high (~730 mgC/m²/day) (Figure 3B-C). Isotopic measurements made later showed that 75% of this flux originated from the dissolution of carbonate by sulfuric acid, and that the remaining 25% was from the rock organic matter oxidation [2]. Based on this new method, Robert Hilton, Guillaume Soulet, and the ROC-CO, team are deploying these chambers in other locations with different rock types, while also monitoring the CO₂ flux regularly through the year to assess the temporal variability of CO₂ fluxes to be determined. Together, these data will help to improve our understanding of how the oxidative weathering of rocks impacts the carbon cycle in the geological past, the present and into the future.

References:

- Hilton, RG, et al., (2014) Geological respiration of a mountain belt revealed by the trace element rhenium. Earth and Planetary [1] Science Letters 403:27-36.
- Soulet G, Hilton RG, et al. (2018) Technical note: In situ measurement of flux and isotopic composition of CO, released during [2] oxidative weathering of sedimentary rocks. Biogeosciences 15(13):4087-4102.
- Hardie SML, Garnett MHH, et al. (2005) Carbon dioxide capture using a zeolite molecular sieve sampling system for isotopic [3] studies (¹³C and ¹⁴C) of respiration. Radiocarbon 47(3):441–451.

PP Systems would like to thank and acknowledge Robert G. Hilton and Guillaume Soulet, (Durham University, Durham DH1 3LE, United Kingdom) for providing the information contained in this application note.

To learn more about the ROC-CO2 project, visit https://roc-co2.weebly.com

y @ROC_CO2 y @geoCcycle

If you would like to learn more about this application or speak with one of our experienced technical staff, please feel free to get in direct contact with us via any of the contact information listed below:

110 Haverhill Road, Suite 301 Amesbury, MA 01913 U.S.A.

Tel: +1 978-834-0505 Fax: +1 978-834-0545

support@ppsystems.com ppsystems.com

@pp_systems

- company/pp-systems
- ppsystems.intl

02.19

ppsystemsing

ppsystems.com

sales@ppsystems.com