Measuring Mesophyll Conductance During Photosynthesis in C₃ Plants

Mesophyll conductance in C_3 plants refers to the movement of CO_2 from the intercellular air spaces within leaves to the site of carboxylation by Rubisco inside the chloroplast. This is partly movement of CO_2 by diffusion, but probably also involves metabolic steps, based on its sometimes high apparent temperature sensitivity (Warren 2006). Just based on the diffusion pathway, it is anticipated that mesophyll conductance (g_m) often substantially limits photosynthesis by lowering the CO_2 concentration at the site of fixation (C_c). In other words, C_c is often significantly less than C_i during photosynthesis.

Current experimental methods of estimating mesophyll conductance are based on determining simultaneously the rate of CO₂ assimilation and the difference between C_i and Cc ($g_m = A/(C_i-C_c)$). Many researchers consider that the most reliable method of estimating mesophyll conductance currently involves simultaneous measurements of net CO₂ flux and carbon isotope discrimination (Evans et al. 1986). Unfortunately, on-line carbon isotope measurements are available to few researchers. However, four different methods of estimating mesophyll conductance use more standard leaf gas exchange apparatus, some combined with chlorophyll fluorescence measurements, and are available to users of the CIRAS-3 system. These are described below. While measurement PPFD seems to have only minor impact on mesophyll conductance, it strongly affects the activation state of Rubisco, and both mesophyll conductance and Rubisco can also be strongly temperature dependent.

Method 1

(without chlorophyll fluorescence measurements)

The initial slope of A vs. C_i curves is, in theory, controlled both by the carboxylation capacity of Rubisco, and by mesophyll conductance. Ethier and Livingston (2004) proposed that mesophyll conductance could be estimated from the degree of curvature of the initial slope of A vs. C_i curves (see also Harley et al. 1992). Publicly available software for analyzing photosynthetic response curves, such as that by Sharkey (2016) provides estimates of mesophyll conductance based on the Ethier and Livingston method. The A vs. C_i curves generally require several data points in the low C_i region for reliable estimates of gm, and those estimates usually must assume that gm does not change with C_i (Sharkey 2016) which is currently a subject of debate. However, using the linear CO₂ ramping capability of the CIRAS-3, enough data points in the low C_i range may be available to provide estimates of mesophyll conductance over different ranges of low C_i and allow testing of the assumption that mesophyll conductance is independent of C_i, or even to permit estimates of the response of mesophyll conductance to C_i. [See CIRAS-3 Application Note on linear ramping of CO_2 For sunflower and soybean, we have found no evidence of changes in mesophyll conductance with C_i using CO₂ ramping to develop A vs. C_i curves. Scripts for collecting both steady-state A vs. C_i curves and rapid A vs. C_i curves are available from PP Systems.

Method 2 & 3

Harley et al. (1992) developed two different methods of estimating mesophyll conductance by combining measurements of leaf gas exchange with chlorophyll fluorescence. The two methods are referred to as the "constant J" and "variable J" methods, where J refers to photosynthetic electron transport, in this case estimated using fluorescence. Subsequent modifications of these methods alter the values only slightly (c.f. Singh and Reddy 2016).

Both methods depend on generating steady-state A vs. C_i responses coupled with fluorescence measurements of the quantum efficiency of photosystem II at each step in the response curve, and ideally also a measurement of leaf respiration in the light. A script which collects "multipulse" measurements of psiPSII, with parameters suitable for plants such as sunflower and soybean is available from PP Systems. With fluorescence measurements, we prefer to use manual recording of the data on the A vs. C_i curve, based on assimilation rates being constant at each step for about a minute, because the pulses of high light used for fluorescence temporarily disrupt gas exchange analysis.

Method 2 (variable J method)

This method additionally requires a measurement of photosynthesis, C_i, and psiPSII at very high CO₂ (i.e. $C_i > 1000 \ \mu mol \ mol^{-1}$) or at low O₂, to determine the proportionality between J and psiPSII (Harley et al. 1992).

Method 3 (constant J method)

For the constant J method of estimating mesophyll conductance, more measurements at intermediate CO_2 levels (where J tends to be constant) than are normally obtained are useful. Since J is displayed after each measurement of fluorescence, it is easy to tell if J is unchanged with CO_2 .

Method 4 (oxygen sensitivity method)

The response of photosynthesis to oxygen concentration depends on the CO_2 concentration at Rubisco (C_c), and thus

provides an estimate of mesophyll conductance from corresponding measurements of A and C_i (Bunce 2009). A vs. C_i curves at normal (21%) and 2% oxygen can also be used to estimate the dependence of mesophyll conductance on C_i (Bunce 2010). Singh and Reddy (2016) provided an Excel-based calculator for estimating mesophyll conductance from oxygen responses of photosynthesis in the V_{Cmax}- limited part of A vs. C_i response curves. With the CIRAS-3 no corrections of CO_2 and H₂O readings between 2 and 21% O₂ are needed, as they are with some other instruments. Air with altered O_2 concentration is provided to the air inlet of the CIRAS-3 using a "T" connector to avoid over-pressures. A $2\% O_2$ concentration is convenient to use, so that dark respiration is unaffected, and "respiration" needed in the Singh calculator can be obtained from the extrapolated value of A at zero C_i at 2% O₂.

References

Bunce, J.A. 2009. Use of the response of photosynthesis to oxygen to estimate mesophyll conductance to carbon dioxide in water-stressed soybean leaves. Plant Cell and Environment 32, 875-881.

Bunce, J.A. 2010. Variable responses of mesophyll conductance to substomatal carbon dioxide concentration in common bean and soybean. Photosynthetica 48, 507-512.

Ethier, G.J., Livingston, N.J. 2004. On the need to incorporate sensitivity to CO₂ transfer conductance into the Farquhar-von Caemmerer-Berry model of photosynthesis. Plant Cell and Environment 27, 137-153.

Evans, J.R., Sharkey, T.D., Berry, J.A., Farquhar, G.D. 1986. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Australian Journal of Plant Physiology 13, 281-292.

Harley, P.C., Loreto, F., Di Marco, G., Sharkey, T.D. 1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO₂. Plant Physiology 98, 1429-1436.

Sharkey, T.D. 2016. What gas exchange data can tell us about photosynthesis. Plant Cell and Environment 39, 1161-1163.

Singh, S.K., Reddy, V.R. 2016. Methods of mesophyll conductance estimation: Its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO₂. Physiologia Plantarum 157, 234–254.

Warren, C.R. 2006. Estimating the internal conductance to CO₂ movement. Functional Plant Biology 33, 432-442.

If you would like to learn more about this application or speak with one of our experienced technical staff, please feel free to get in direct contact with us via any of the contact information listed below:

110 Haverhill Road, Suite 301 Amesbury, MA 01913 U.S.A.

Tel: +1 978-834-0505 Fax: +1 978-834-0545

support@ppsystems.com ppsystems.com

sales@ppsystems.com